
PHYSICAL REVIEW E MAY 1997VOLUME 55, NUMBER 5
Parallel algorithm and dynamic exponent for diffusion-limited aggregation

K. Moriarty and J. Machta
Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003-3720

R. Greenlaw
Department of Computer Science, University of New Hampshire, Durham, New Hampshire 03824

~Received 16 December 1996!

A parallel algorithm fordiffusion-limited aggregation~DLA ! is described and analyzed from the perspective
of computational complexity. The dynamic exponentz of the algorithm is defined with respect to the proba-
bilistic parallel random-access machine model of parallel computation according toT;Lz, whereL is the
cluster size,T is the running time, and the algorithm uses a number of processors polynomial inL. It is argued
that z5D2D2/2, whereD is the fractal dimension andD2 is the second generalized dimension. Simulations
of DLA are carried out to measureD2 and to test scaling assumptions employed in the complexity analysis of
the parallel algorithm. It is plausible that the parallel algorithm attains the minimum possible value of the
dynamic exponent in which casez characterizes the intrinsic history dependence of DLA.
@S1063-651X~97!10305-1#

PACS number~s!: 61.43.Hv, 02.70.2c, 05.40.1j
e
e
g
re
iv
r

-
rt
to

te
i
i
b
st
us
r
m

te
c
o
th
f
-
d
th
le

ve
ity
ca
in
ol

d-
en
id-
llel
rs

wer

e
m-

ster
ven
ar-
-
w
We
pu-
ine
o-
the

a
of
-

nta-
is

of
I. INTRODUCTION

This paper examines diffusion-limited aggregation~DLA !
@1,2# from the perspective of computational complexity. W
seek to answer the following question: Given an idealiz
parallel computer, what is the fastest way of generatin
representative DLA cluster? Our objectives are to give a p
cise formulation of this question, to propose a quantitat
answer, and to convince the reader that the answer cha
terizes an intrinsic property of DLA.

A DLA cluster is defined by the following growth pro
cess. The cluster begins as a single, stationary seed pa
and grows by the addition of diffusing particles that stick
the cluster upon contact. A diffusing particle~random
walker! is released a large distance from the growing clus
and either joins the cluster by sticking to it or is discarded
it journeys very far away. In either case, a new particle
released as soon as the fate of the preceding one has
determined. Growth is terminated when a desired clu
mass is reached. It is important to note that only one diff
ing particle is present in the system at any given time. The
fore, it is not obvious how to take advantage of parallel co
putation in generating DLA clusters.

The fractal geometry of DLA aggregates has been ex
sively studied@3–5#. The clusters bear a strong resemblan
to highly branched structures observed in experiments
electrodeposition, viscous fingering, crystallization, and
growth of bacteria colonies@2#. The asymptotic properties o
DLA have proved difficult@2,6# to establish using either the
oretical or numerical methods. This has created a deman
efficient means of generating very large aggregates. To
end, a parallel approach to DLA has recently been imp
mented@7#.

The speedup that can be attained by parallelizing a gi
problem is the subject of parallel computational complex
theory. Parallel complexity theory is the branch of theoreti
computer science in which problems are classified accord
to the time and processor requirements of their parallel s
551063-651X/97/55~5!/6211~8!/$10.00
d
a
-
e
ac-

icle

r
f
s
een
er
-
e-
-

n-
e
n
e

for
is
-

n

l
g
u-

tions. Several growth models including DLA have been stu
ied from the perspective of parallel complexity theory. Ed
growth, invasion percolation, ballistic deposition, and sol
on-solid growth have all been shown to have highly para
algorithms @8#; that is, using sufficiently many processo
~but still polynomial in terms of the system size!, these sys-
tems may be simulated in a time that scales as some po
of the logarithm of the system size~polylog time!. DLA, on
the other hand, has been shown@9,10# to belong to the class
of inherently sequential or, more formally,P-complete prob-
lems. Therefore, it is unlikely that DLA clusters can b
sampled in parallel in polylog time when restricted to a nu
ber of processors polynomial in the system size.

Present sequential DLA algorithms@5# achieve running
times that are at best linear in the cluster mass, where clu
mass refers to the number of particles in the cluster. E
though theP-completeness result indicates that a highly p
allel ~i.e., polylog time using a polynomial number of pro
cessors! DLA algorithm probably does not exist, we sho
that a more modest parallel speedup is still possible.
adopt the conventional theoretical model of parallel com
tation known as the parallel random-access mach
~PRAM! and present a polynomial-processor PRAM alg
rithm for DLA whose average running time scales as
cluster mass raised to a power less than unity.

The use of PRAM time permits a robust definition of
dynamic exponentthat can be applied to a wide range
Monte Carlo algorithms@10#. We define the dynamic expo
nentz via

T;Lz, ~1.1!

whereT is the PRAM time needed to generate a represe
tive cluster of sizeL using a number of processors that
bounded by a power ofL. The cluster sizeL is the linear
dimension of the cluster measured, for example, in units
the particle size. The symbol; indicates proportionality in
the asymptotic (L→`) limit. We will subsequently deter-
6211 © 1997 The American Physical Society

he
or
u
n
m
ar

re
e
id
om
of
e
.
o

e
le
in
on

ly
o
u
of
V

m
fs
al
w
w
ry
-
f
p
d
a
s
or
te
th
od
it
si

m
ed
nd
ti
es
lo
cu
n

the
te

e-
r’s

ad
e
re-
el.
ith-
ed
we

ta-
, a
r of
in
his
Y
r to
a-

s-
a
and
d in
del
On
tion
ual
ea-

ns
te a
pth,
aral-

e
se
in-
or
r
M

tep,
ise
.

o

o-
t
-

be

6212 55K. MORIARTY, J. MACHTA, AND R. GREENLAW
mine the value ofz for our PRAM algorithm in terms of
static scaling exponents of DLA.

Since massive parallelism of the type allowed by t
PRAM model is not currently practical, we do not intend f
our DLA algorithm to be used at the present time for sim
lations. Though some elements of our approach may eve
ally prove useful in designing a practical parallel algorith
our primary goal is to provide an alternative method of ch
acterizing complex objects such as DLA clusters.

Bennett @11,12# suggests that an object should be
garded as complex if it contains structures that are unlik
to have arisen quickly. In this view the presence of unavo
able history dependence is the signature of physical c
plexity. We suggest that the intrinsic history dependence
physical object may be quantified by the PRAM time r
quired to simulate it using the fastest possible approach
this way computational complexity serves as a gauge
physical complexity.

The remainder of the paper is organized as follows. S
tion II presents a brief introduction to the theory of paral
computational complexity. Section III places this paper
context by providing some background on DLA simulati
methods, including a discussion of the parallel approach
Ref. @7#. Our PRAM algorithm for growing DLA clusters is
presented and discussed in Sec. IV, and in Sec. V we ana
the algorithm’s complexity and calculate its dynamic exp
nent. In Sec. VI we present the results of a numerical sim
lation, performed using the sequential DLA algorithm
Ref. @5#, to test scaling assumptions employed in Sec.
Section VII contains our conclusions.

II. INTRODUCTION TO PARALLEL COMPLEXITY
THEORY

This section provides some background on parallel co
putational complexity theory. The reader is referred to Re
@13–15# for further details. The objective of computation
complexity theory is to classify problems according to ho
the computational resources needed to solve them scale
the size of the problem. For parallel complexity the prima
resources are hardware~consisting of memory and proces
sors, or their equivalents! and time. One of the strengths o
complexity theory is that resource requirements are com
rable within a diverse group of computational models inclu
ing parallel random-access machines, Boolean circuits,
systems of formal logic. Time requirements for a wide cla
of computational models differ by only a logarithmic fact
when the models are required to use polynomially rela
amounts of hardware. Complexity results thus have a ra
fundamental status independent of the computational m
adopted. This fact supports our belief that a complex
analysis of simulating a physical system reveals intrin
properties of the system.

In this paper we employ the parallel random-access
chine model of parallel computation. A PRAM is compos
of a number of processors, input and output registers, a
global random-access memory. The processors are iden
except for an identifying positive-integer label. Each proc
sor has a local memory and has access to the common g
memory. The processors run synchronously, and all exe
the same program. In one time step, a single instructio
-
tu-
,
-

-
ly
-
-
a
-
In
f

c-
l

of

ze
-
-

.

-
.

ith

a-
-
nd
s

d
er
el
y
c

a-

a
cal
-
bal
te
is

performed by a subset of the processors determined by
integer labels. An example of such an instruction is ‘‘wri
the contents of local memory cella to global memory cell
b.’’ Note that b may differ from processor to processor d
pending on a previous calculation involving the processo
label.

It may be that two or more processors will attempt to re
from or write to the same global memory cell during th
same clock cycle. The way in which such conflicts are
solved distinguishes several variants of the PRAM mod
These variants all have the same running time up to logar
mic factors when restricted to using polynomially relat
amounts of hardware. For the sake of this exposition,
choose the ‘‘concurrent read, concurrent write’’~CRCW!
model. In the CRCW PRAM many processors may simul
neously write to the same global memory cell; of course
scheme is needed for write arbitration. There are a numbe
different methods currently used, and we adopt the one
which the lowest numbered processor writing succeeds. T
variant of the CRCW PRAM is known as the PRIORIT
model, and all references to the PRAM in this paper refe
it. The word size in a PRAM is taken to scale as the log
rithm of the problem size.

A crucial feature of the PRAM model is that any proce
sor may read from or write to any global memory cell in
single time step. Due to the finiteness of signal speeds
hardware density, PRAM performance cannot be achieve
a scalable parallel computer. Nonetheless, the PRAM mo
is useful from both practical and theoretical standpoints.
the practical side, it serves as a guide to the implementa
of algorithms on real parallel machines. On a concept
level, PRAM time provides a measure of a fundamental f
ture of a computation that may be calledlogical depth@11#.
Logical depth is the minimum number of logical operatio
that must be carried out in sequence in order to comple
parallel computational process. The greater the logical de
the smaller the speedup that can be achieved through p
lelism.

The power of parallel computation is illustrated by th
problem of addingn numbers. The problem size in this ca
is proportional ton ~assuming the numbers are bounded
dependent ofn). On a sequential random-access machine
familiar desktop computer,n numbers can be added in linea
time in an obvious way using a single DO loop. The PRA
approach uses a binary tree. For simplicity, suppose thatn is
an integer power of 2, say,n equals 2k. The numbers are
loaded into global memory and then each of then/2 proces-
sors is assigned to add a pair of numbers. After the first s
we haven/2 partial sums. These are then added in pairw
fashion and so on. Thus afterk steps the sum is computed
The parallel time isO(logn) using n processors~we can
bring it down ton/ logn by trading off processors for time!
instead of theO(n) time required by a single processor; s
we have achieved an enormous~exponential! speedup
through parallelism while using a polynomial number of pr
cessors inn. Summingn numbers on a PRAM requires a
least logn/loglogn time when restricted to a polynomial num
ber of processors@16#, so the logical depth of this problem
~in terms of the PRAM! is between logn/loglogn and logn.

A similar but somewhat more involved approach may
used to compute all the partial sums of a list ofn numbers in

r t
nt

ic

l
to
o-

m
lly
oc
ro

ar
or

i
on
en

r-

ns

el
in
c

r-
ti

ta
ve
ng
m
th
am
ur
-
ic
er
er
th
g

ime

m-
ic

for
s
t
uce
ar-
la-
par-

se,
ch.

.
by
,’’
nge
go-
n-
-
dom
om
will
e of
is
le
via-
ly
of

and
us-

r is

lds
to

r-

r

nt
has
er-
u-
ally

er
its

55 6213PARALLEL ALGORITHM AND DYNAMIC EXPONENT FOR . . .
O(logn) time usingn/ logn processors@14,17#. This is an
example of a prefix computation and will be needed late
obtain the full trajectory of a random walker in an efficie
manner.

A problem of size n that can be solved in time
(logn)O(1) ~polylog time! usingnO(1) processors~polynomial
hardware! is said to have ahighly parallelsolution. Decision
problems~problems with ‘‘yes’’ or ‘‘no’’ answers! that have
highly parallel solutions are in the complexity classNC.
Eden growth is an example of a model in statistical phys
associated with a decision problem inNC. Eden clusters of
massM can be simulated on a PRAM in polylog~in M) time
using polynomially many processors@8#.

A problem of sizen that can be solved in polynomia
(nO(1)) time with polynomially many processors is said
have afeasiblesolution. Decision problems with feasible s
lutions are in the complexity classP. (P is usually defined as
the class of problems that can be solved in polynomial ti
with a single processor; however, allowing polynomia
many processors does not enlarge the class since one pr
sor can simulate one clock cycle of polynomially many p
cessors in polynomial time.! ClearlyNC#P. A fundamental
question in parallel complexity theory is whether there
feasible problems that have no highly parallel solution
more formally, whetherNCÞP.

It is conjectured, though not yet proved, that there are
fact feasible problems that have no highly parallel soluti
The best candidate class of problems so far has been id
fied using the property ofP completeness. For a decision
problemP to beP completeP must be contained inP and
all other problems inP must be ‘‘easily transformable’’ into
P ~see Ref.@13# for further details!. TheP-complete prob-
lems are the hardest problems inP to solve in parallel. It can
be proved that ifany P-complete problem has a highly pa
allel solution theneveryproblem inP has a highly parallel
solution. Thus, if the conjecture thatNCÞP holds,
P-complete problems do not have highly parallel solutio
P-complete problems are often referred to asinherently se-
quential. The conjecture thatNCÞP is supported in part by
the fact that there is a large class ofP-complete problems
~see Ref.@13#! and, despite much effort, no highly parall
algorithm has been found for any member of the class. F
ing the shape of a DLA cluster given a list of particle traje
tories is aP-complete problem@10#.

While computational complexity theory is generally fo
mulated in terms of decision problems, computational sta
tical physics typically deals withsampling problems.The
goal here is to generate a representative member of a s
tical ensemble, e.g., a configuration of Ising spins at a gi
temperature or a DLA cluster. Associated with sampli
methods in statistical physics are natural decision proble
obtained by considering the random numbers used by
algorithm as inputs. Complexity statements concerning s
pling methods can be formulated in terms of these nat
decision problems. References@8,10# discuss the relation be
tween sampling and decision problems in statistical phys

Sampling methods require a supply of random numb
Rather than confronting the subtle issues related to gen
ing random or pseudorandom numbers, we employ
probabilistic PRAM model in which each processor is au
o

s

e

es-
-

e
,

n
.
ti-

.

d-
-

s-

tis-
n

s
e
-
al

s.
s.
at-
e
-

mented with a device that generates random bits. In one t
step a processor may draww random bits, wherew is the
word size. The algorithm described in this paper is a sa
pling method for DLA implemented on the probabilist
PRIORITY CRCW PRAM model.

III. PREVIOUS SIMULATION METHODS FOR DLA

In this section we discuss two simulation approaches
DLA. For simplicity we restrict the discussion from thi
point onward to off-lattice DLA in two dimensions. We firs
discuss the standard sequential method in order to introd
some ideas and terminology that will be needed for our p
allel algorithm. This method will also be used in the simu
tions described in Sec. VI. The second approach is the
allel DLA ~PDLA! method of Kaufmanet al. @7#. Their
technique is closely related to the approach that we will u
and its limitations motivate changes that yield our approa

The standard sequential simulation method@3,5# imple-
ments several modifications to the original DLA algorithm
First, unnecessary initial steps of the walks are eliminated
starting the walkers at random positions on a ‘‘birth circle
just large enough to enclose the existing cluster. This cha
has no effect on the cluster distribution sampled by the al
rithm. Efficiency is also improved, without changing the u
derlying DLA distribution, by allowing the walkers to ex
ecute variable-step-size rather than fixed-step-size ran
walks, taking larger steps in the empty regions away fr
the cluster or between its branches. For our purposes we
assume a fixed step size. Finally, if a walker steps outsid
a ‘‘death circle,’’ the walker is discarded and a new one
started from the birth circle. If the radius of the death circ
is chosen to be much larger than the cluster radius, de
tions from the true DLA distribution can be made extreme
small. ~Issues pertaining to the birth, death, and step size
the walkers are discussed in Ref.@18#.! A program@5# that
employs these techniques is used in our simulations
achieves a running time that is very nearly linear in the cl
ter mass.

PDLA @7# is a practical parallel version of DLA. In this
schemeN random walks are controlled byN processors. As
soon as any walker sticks to the cluster, a new walke
added to the system so that there are alwaysN diffusing
particles. In the early stages of cluster growth, PDLA yie
more compact structures than ordinary DLA and is similar
multiparticle diffusive aggregation introduced by Voss@19#.
Multiparticle diffusive aggregation is not in the same unive
sality class as DLA. However, as the cluster massM be-
comes much larger thanN, PDLA crosses over to ordinary
DLA.

PDLA becomes a good approximation to DLA fo
M@N for the following reason. Consider a group ofN walk-
ers launched near a cluster of massM . We define aninter-
ferencewithin such a group of walkers to be the attachme
of one of the walkers to another member of its group that
already joined the cluster. Clearly a group of walks p
formed in parallel may result in a different cluster config
ration than the same group of walks performed sequenti
in some given order. IfM@N, however, it is likely that each
walker will explore a different region of the cluster and nev
have the opportunity to interfere with another member of

lk

n
to

rin
p
i
o-
re
p
a
n

A
O
ib
im
in
e
in

rg
er
ra
ar
te
le
ul
e
to

t t
-
a
er
he
r
op

us
e
y

r

e
r.
nd
ti

d

a

p in
he
ass
of

m-

gle
the
m
r-
l
ec.
o-

e-
alk
en-
to
is
rfer-

on

the

ry.

in

in
the
of
ng
the

s-
ed to
iven
ther
ny
to a

e
s of
he

. If

bed
ral-

rs

s

6214 55K. MORIARTY, J. MACHTA, AND R. GREENLAW
group. In this case it makes no difference whether the wa
are performed sequentially or in parallel.

Since PDLA uses groups of walks of fixed sizeN, this
method has the same dynamic exponent as the seque
algorithm. It is only the prefactor relating running time
cluster mass that is smaller by a factor ofN. Our idea is to let
the group size be determined by interferences; i.e., du
each iteration, we process the next interference-free grou
walkers in parallel. Since the average size of this group w
increase withM , our algorithm has a smaller dynamic exp
nent than PDLA or the sequential algorithm. Furthermo
PDLA does not sample the correct DLA distribution exce
in the limit M@N. Our algorithm handles interferences in
way that allows the correct distribution to be sampled for a
value ofM .

IV. NEW PARALLEL ALGORITHM FOR DLA

In this section we present our parallel algorithm for DL
and then discuss each step of the algorithm in detail.
complexity analysis is somewhat unusual and best descr
in two sections. In the present section we examine the t
complexity of each step in terms of a few parameters
volved in the algorithm. In Sec. V we examine the tim
complexity of the algorithm’s main loop and also expla
how several of the parameters are chosen.

The central theme of our algorithm is to generate la
and dynamically increasing groups of noninterfering walk
that in turn can be processed quickly and correctly in pa
lel. At the beginning of each iteration, we generate, in p
allel, a group of random walks large enough so that an in
ference will be nearly certain to occur. Using paral
techniques we then identify the first interference that wo
occur if the walks were performed sequentially in a specifi
order. Finally, in parallel, we attach any walkers that stick
the cluster up to the point of the first interference.

The cluster begins as a single seed particle placed a
origin. The coordinates~pairs of fixed-precision position val
ues! of successive cluster particles are stored in memory
cording to the order in which the particles join the clust
The algorithm’s main loop is iterated until a cluster of t
desired mass is grown. We analyze the expected numbe
iterations of this loop in the next section. The main lo
consists of the following steps.

~1! Choose a birth radiusRB , a walk lengthK, and a
numberW of walks to generate.

~2! GenerateW random walks, each beginning at radi
RB and consisting ofK steps of fixed length. Number th
walks from 1 throughW to indicate the order in which the
would be performed by a sequential algorithm.

~3! Determine the fate of each walker, temporarily igno
ing interferences with the others.

~4! Identify the first interference that would occur if th
walks were performed sequentially in their specified orde

~5! Attach any walkers that stick to the cluster up to a
including the second member of the interfering pair iden
fied in step 4. Disregard any remaining walks~note that this
does not affect the distribution of DLA clusters generate!.
Update the cluster massM and the cluster radiusRC accord-
ingly.

We now elaborate on the details of these steps and ex
s

tial

g
of
ll

,
t

y

ur
ed
e
-

e
s
l-
-
r-
l
d
d

he

c-
.

of

-

-

m-

ine the time and processor bounds required for each ste
terms of several parameters occurring in the algorithm. T
explanation of how these values relate to the cluster m
M and the analysis of the expected number of iterations
the main loop are given in Sec. V.

In step 1 the radiusRB of the birth circle is chosen, as in
most sequential DLA algorithms, to be a few particle dia
eters greater than the distanceRC from the origin to the most
remote cluster particle. In our algorithmRB must exceed
RC by at least two particle diameters to ensure that a sin
interference cannot cause the cluster to grow beyond
birth circle. In order to add the individual steps of a rando
walk efficiently in parallel, we limit each walk to a predete
mined number of stepsK. In principle, walks in sequentia
DLA can be arbitrarily long. Nonetheless, we argue in S
V that, without affecting the dynamic exponent of our alg
rithm, K can be chosen as a function ofRC in such a way
that the ideal DLA distribution is approximated to any d
sired degree of accuracy. In this sense, limiting the w
length is analogous to implementing a death circle in sequ
tial DLA. Finally, W is chosen, as discussed in Sec. V,
make the probability of an interference close to unity. Th
choice ensures that the largest possible group of noninte
ing walks will be identified for parallel processing.

To begin a walk in step 2, a random starting position
the birth circle is selected. ThenK randomly directed steps
of fixed length are generated in parallel.~Because walks are
generated in parallel, the variable-step-size scheme of
most efficient sequential algorithms cannot be used.! Finally,
a parallel prefix computation@14# is performed to calculate
the position of the walker after each step of its trajecto
Since a prefix computation involvingK quantities can be
performed on a PRAM inO(logK) time usingK/ logK pro-
cessors, theW K-step walks can be determined in parallel
O(logK) time usingWK/ logK processors.

Once the walks have been computed, we determine
step 3 if, where, and on what step of its trajectory each of
W walkers would encounter the existing cluster if none
the other walkers in the group preceded it. The followi
sequence of operations, which determines the fate of
i th walker, is performed for allW walkers in parallel.

First,M processors are assigned to each of theK steps of
the i th walk, with theM lowest-numbered processors a
signed to the first step and successive processors assign
the later steps. Each of the processors assigned to a g
step of the walk checks one cluster particle to see whe
the i th walker would contact it during the specified step. A
processor that detects such a hit writes its step number
memory cell assigned to thei th walker. Note that allMK
processors for thei th walk write to the same cell; thus, th
assignment of lower-numbered processors to earlier step
the walk ensures that this cell will contain the number of t
earliest step~if any! on which thei th walker contacts the
cluster in the absence of interference from other walkers
no processor writes to the designated cell, then thei th walker
does not hit the existing cluster. The procedure just descri
can be carried out, for an arbitrary walker, in constant pa
lel time usingMK processors or, alternatively, inO(logK)
time using onlyMK/ logK processors by trading processo
for time.

In the event that thei th walker does hit the cluster, it

r-
e
th
er
nd
d

,

s

pr

es
a

on
n
in
te
n
s
o

,
th
th
ce
s
to
-

ig
e
h

so

th

e
te
th
ke

t
te
er
on
to
he

bl
or

s

me.

xt
ach
run-

op
e
e
ve
e,
he
at
s.

n.
y
as

ty

-
m
in

o-

gle

tion

al

le

r-
the

55 6215PARALLEL ALGORITHM AND DYNAMIC EXPONENT FOR . . .
sticking position and the particle to which it sticks, its ‘‘pa
ent’’ particle, must be determined. So far we have identifi
the step on which the walker hits the cluster, but, in
process of taking this step, the walker might overlap sev
cluster particles. By means of a standard algorithm for fi
ing the minimum ofM numbers, the first particle contacte
during the step~the i th walker’s true parent! can be identified
in constant parallel time usingM (M21)/2 processors or
alternatively, inO(logK) time usingM (M21)/(2logK) pro-
cessors. Thei th walker’s position upon first contacting it
parent is recorded as its potential sticking site.

To summarize step 3, the operations described in the
ceding two paragraphs determine the fate of thei th walker as
if none of the other walkers in the group preceded it. Th
operations can be performed in constant time and, for
W walkers in parallel, usingWMmax$K,(M21)/2% proces-
sors or, alternatively, in time O(logK) using
WMmax$K,(M21)/2%/ logK processors.

The fourth step of the algorithm is to identify, based
the set of potential cluster attachments, the next interfere
that would occur if the walks were carried out sequentially
the order specified in step 2. In other words, we must de
mine the numberi int of the lowest-numbered walker that, o
some step of its trajectory prior to striking the existing clu
ter, would hit a particle placed at the potential sticking site
some lower-numbered walker. Determiningi int can be ac-
complished in constant time usingKW(W21)/2 processors
one processor for each pair of walks and each step of
later walker. Each step of the later walker is compared to
potential sticking site of the earlier walker. If an interferen
is found during a comparison, then the detecting proces
writes the number of the higher-numbered walk of its pair
the memory location designatedi int . Note that the assign
ment of the processors 1, . . . ,KW(W21)/2 to their com-
parisons is such that lower-numbered processors are ass
to comparing lower-numbered walks. For example, proc
sors 1 throughK compare walk 1’s sticking site and eac
step of walk 2, processorsK11 through 3K compare walks
1 and 3, and 2 and 3, and so on. By again trading proces
for time, this computation can be performed inO(logK)
steps usingKW2/logK processors.

The techniques from step 3 can again be used to find
parent and sticking site of walkeri int taking into account the
addition of lower-numbered walks to the cluster. The nec
sary operations can be performed within the bounds no
for an arbitrary walker in step 3 above. Here we observe
no choice ofW can guarantee that an interference will ta
place. In the case of no interference, we simply seti int equal
toW.

In step 5 walkeri int and all lower-numbered walkers tha
hit the cluster are permanently placed at their sticking si
This can be accomplished by making a list of the walk
with i< i int and, by means of a parallel sublist computati
@14#, removing from the list any walkers that do not attach
the cluster. If the initial list is constructed according to t
specified order of the walks, then ranking@14# the new clus-
ter particles based on their positions in the sublist will ena
their coordinates to be written to the appropriate mem
locations and the new value ofM to be computed. For an
initial list of length i int , the sublist and ranking procedure
can be carried out inO(logi int) time usingi int / logi int proces-
d
e
al
-

e-

e
ll

ce

r-

-
f

e
e

or

ned
s-

rs

e

s-
d
at

s.
s

e
y

sors@17#. The cluster mass may be updated in constant ti
Any change inRC resulting from the addition of the new
particles can be calculated in constant time usingi int proces-
sors since the cluster is ‘‘centered’’ at the origin. In the ne
section, the time and processor requirements found for e
step of the main loop are used to estimate the average
ning time of the algorithm.

V. ANALYSIS OF THE MAIN LOOP OF THE ALGORITHM

First we describe howK andW are specified and then
examine the expected number of iterations of the main lo
in our parallel DLA algorithm. To begin the analysis, w
must specify howK andW are to be chosen in step 1 of th
algorithm. SinceRB;RC and because random walks beha
diffusively, with distance scaling as the square root of tim
choosingK;RC

2 is necessary in order to approximate t
ideal DLA distribution. A consequence of this choice is th
the sticking probability remains fixed as the cluster grow
We note that by increasing the prefactor relatingK to RC we
can come arbitrarily close to sampling the ideal distributio

The choice ofW is not critical as long as the probabilit
of an interference among the walkers remains near unity
the cluster massM increases. Since the sticking probabili
is constant, choosingW;M11e for a small e.0 is suffi-
cient.

For DLA it is believed that the radius of gyrationRG
scales with cluster mass according to

RG;M1/D, ~5.1!

whereD is the fractal dimension. SinceRC;RG , we have
K;M2/D; therefore, bothK andW need only increase poly
nomially with M . Consequently, no step of the algorith
requires more than a polynomial number of processors
M . Specifically, the analysis given in Sec. IV yields a pr
cessor bound ofM2(111/D1e)/ logM using the probabilistic
PRIORITY CRCW PRAM model.

To estimate the change in cluster mass during a sin
iteration of the main loop, we defineP(M ,n) to be the prob-
ability for an interference to occur among the nextn walkers
that stick to a DLA cluster of massM . According to our
algorithm for a growing cluster that has attained a massM ,
the expected change in cluster mass during the next itera
is given by

DM5 (
n52

W

n@P~M ,n!2P~M ,n21!#. ~5.2!

For largeM andW the sum can be replaced by an integr

DM;E
0

`

dnn
]P~M ,n!

]n
. ~5.3!

If DLA clusters are self-similar, then it seems plausib
that the interference probability depends not onM or n in-
dividually, but only on some combination thereof, dete
mined by the multifractal geometry. Therefore, we make
scaling hypothesis

P~M ,n!5F~nM2g!, ~5.4!

io

u

le

ur
as
to

h
a
r
ea
t

-

q
e

in
r
hi

m.

ter

in

only

tial

e

er
ne
ext

st
ous

cur-
om
als
ent

ean
its
ster

uring
r-
ired
00

6216 55K. MORIARTY, J. MACHTA, AND R. GREENLAW
whereg is yet to be determined. Inserting this express
into Eq. ~5.3! yields

DM;Mg. ~5.5!

In Sec. VI we provide simulation results that support o
scaling hypothesis.

We now determine a theoretical value forg by examining
the form ofP(M ,n) in the limit M@n@1. Clearly, for any
finite n, interferences will become rare asM→`. In this
limit, the n(n21)/2 distinct interferences that are possib
among the nextn walkers that stick to a cluster of massM
may be treated as independent events. Thus

lim
M→`

P~M ,n!5
n~n21!

2
P~M ,2!, ~5.6!

whereP(M ,2) is the probability for an interference to occ
between the next two walkers that stick to a cluster of m
M , i.e., the probability that the second walker will attach
the first.

Now we relateP(M ,2) to scaling exponents of the growt
probability distribution. These scaling exponents, known
generalized dimensions@20#, are defined as follows. Cove
the accessible perimeter of a cluster with boxes of lin
dimensionl and denote byp i the probability that the nex
walker to join the cluster will stick within thei th box. The
qth momentZq of the growth probability distribution is de
fined by

Zq[(
i

p i
q . ~5.7!

For a fixedl such thata! l!RG ~with a the particle radius!,
the scaling behavior ofZq with RG defines theqth general-
ized dimensionDq according to

Zq;RG
2~q21!Dq . ~5.8!

Given two walkers that hit the cluster, we note from E
~5.7! thatZ2 is the probability for both to hit within the sam
box. ClearlyP(M ,2) is not equal toZ2 since, fora! l , only
a small fraction of the cases in which two walkers hit with
the same box will result in interferences. In addition, the
are also cases where two interfering walkers do not hit wit
the same box. Nevertheless, it still seems reasonable to
sume that the scaling behavior ofP(M ,2) is that of Z2,
namely, that

P~M ,2!;M2b, ~5.9!

where

b5D2 /D ~5.10!

and we have made use of Eq.~5.1!. Simulation results pro-
vided in Sec. VI lend support to Eqs.~5.9! and ~5.10!.

Substituting Eq.~5.9! into Eq. ~5.6! gives, for n@1,
P(M ,n);n2M2b. Thus, if P(M ,n) has the assumed form
~5.4!, the exponentg, defined in Eq.~5.4!, is related to the
exponentb, defined in Eq.~5.9!, by

g5b/2, ~5.11!
n

r

s

s

r

.

e
n
as-

whereb has the theoretical valueD2 /D.
We now consider the time requirements of our algorith

Specifically, we obtain an expression forDT, the expected
time required to complete an iteration during which a clus
of massM grows by an amountDM . In Sec. IV, we found
that steps 1–4 of the algorithm could be performed
O(logK) time and step 5 inO(logi int) time. SinceDM is
simply equal to the product of the~constant! sticking prob-
ability and the expected value ofi int , the time to perform
step 5 scales as logDM. As previously mentioned, bothK
andDM scale as powers ofM ; therefore,

DT; logM . ~5.12!

Combining Eqs.~5.5! and ~5.12! we find that the growth
rate dM/dT ('DM /DT) of a typical cluster is given by
dM/dT;Mg/ logM. Integrating this expression yields

T;M12glogM . ~5.13!

By Eqs.~5.1!, ~5.10!, ~5.11!, and~5.13! it follows ~ignoring
the logarithmic factor! that T;RG

z , where the dynamic ex-
ponent is

z5D2D2/2. ~5.14!

It should be noted that this expression forz is valid for any
dimension greater than one and depends on dimension
through the static scaling exponentsD andD2.

VI. SIMULATION RESULTS

In order to test our assumptions Eqs.~5.4! and ~5.9!, we
grew a total of 1440 DLA clusters, using a fast sequen
algorithm developed by Ossadnik@5#. We measured the
probability P(M ,n) for an interference to occur among th
nextn walkers that stick to a cluster of massM . Each cluster
was assigned a specific massM and a particular value ofn
for which P(M ,n) would be measured. Once a clust
reached massM , repeated trials were performed to determi
the likelihood of an interference occurring among the n
n walkers to stick. We performed 106 trials for n52 and
103 trials for n.2. Each trial consisted of releasing te
walkers either until some test walker attached to a previ
test walker~interference! or until n walkers had successfully
attached to the cluster without such an interference oc
ring. In both cases all test walkers were then removed fr
the cluster and the next trial was begun. The fraction of tri
for which an interference occurred provided a measurem
of P(M ,n) for the particular cluster being tested.

In this fashion we measuredP(M ,n) for clusters at each
of eight masses ranging from 105 to 1.73106 and for each of
nine n values between 2 and 94. For each (M ,n) pair, we
grew a sample of 20 clusters and calculated the m
^P(M ,n)& of the 20 individual measurements along with
standard error. Although, at first glance, using each clu
for only one (M ,n) pair might seem inefficient~as opposed,
say, to making measurements at intermediate masses d
the cluster’s growth!, our method eliminates undesirable co
relations between data points. The entire experiment requ
about four weeks of CPU time on a DEC AlphaStation 2
4/166.

-
-
o

o

e
bu
e

f
t

ing
ter
-

-
ult,
ei-

la-

r

nt.
iple
u-
al-
ry
jec-
ve
pos-
ear
rs in
rob-
se
ex-

n,
d by

p-
ed
of

n-

at
e
u-
ad-
ili-

on
ill
in

s

Th

55 6217PARALLEL ALGORITHM AND DYNAMIC EXPONENT FOR . . .
To check Eq.~5.9! and to measureb, we fit a line to a
plot of log10̂ P(M ,2)& vs log10M as shown in Fig. 1. Statis
tical error bars~not shown! in the vertical direction are ap
proximately equal to the symbol height. The apparent go
fit indicates that the dependence ofP(M ,2) on M is well
described by a power law for the range of masses we c
sidered. Our best-fit value of the exponent in Eq.~5.9! is
bexpt50.53060.003. The error bounds in this and subs
quent exponent estimates include only statistical contri
tions and do not reflect the uncertainty associated with
trapolating to infinite cluster size.

In order to test Eqs.~5.4! and ~5.11!, we plotted
^P(M ,n)& vs nM2bexpt/2 as shown in Fig. 2. For the sake o
clarity, only three of the cluster masses are represented in

FIG. 1. log10̂ P(M ,2)& vs log10M , where^P(M ,2)& is the mean
probability, from a sample of 20 DLA clusters of massM , for an
interference to occur between the next two walkers that stick.
solid line is a linear fit to the data and has slope20.53.

FIG. 2. ^P(M ,n)& vs nM2bexpt/2 plotted forM513105 (s),
53105 (h), and 1.73106 (,). ^P(M ,n)& is the mean probability,
from a sample of 20 DLA clusters of massM , for an interference to
occur among the nextn walkers that stick andbexpt50.53 is minus
the slope of the line shown in Fig. 1.
d

n-

-
-
x-

he

plot, but the observed data collapse is no less convinc
when all the data are included. Thus, for our range of clus
masses~a factor of 17!, the interference probability does ap
pear to have the scaling form assumed in Eq.~5.4! with
g5b/2.

Now we compare our measured value ofb with the pre-
diction b5D2 /D @Eq. ~5.10!#. A numerical estimate for the
fractal dimension of two-dimensional DLA is
D51.71560.004 @3#. SinceD is known much more pre-
cisely thanD2, we use this value ofD and our measured
value ofb to predictD2. We obtainD250.90960.006 as
compared with D250.8360.05 in Ref. @21# and
D250.98060.010 in Ref.@22#. Since the two previous re
sults are inconsistent with each other and since our res
though intermediate between the two, is consistent with n
ther, the question of whetherb5D2 /D remains open. At
present, we see no reason to abandon Eq.~5.10!; therefore,
we regard our simulation as providing an alternative, re
tively precise measurement ofD2. Using our numerical
value ofb along with Eqs.~5.11! and~5.13! yields a numeri-
cal valuez51.26160.004 for the dynamic exponent of ou
parallel DLA algorithm, as compared withz5D'1.7 for
both PDLA and the best sequential DLA algorithms.

VII. CONCLUSION

The DLA growth process is inherently history depende
The random walks that generate the cluster must in princ
be run one at a time to precisely simulate the DLA distrib
tion. PreviousP-completeness results show that there is
most certainly no clever way to fully eliminate this histo
dependence and to generate DLA clusters from walk tra
tories by any highly parallel process. In this paper we ha
demonstrated that a more modest parallel speedup is
sible. We have shown that an average running time sublin
in the cluster mass may be achieved by processing walke
successive, interference-free groups. The interference p
ability determines how quickly the average size of the
groups increases with cluster mass and thus controls the
tent of the speedup attainable by this approach.

By adopting the PRAM model of parallel computatio
we are able to precisely characterize the speedup achieve
our parallel approach to DLA. The dynamic exponentz for
the algorithm relates the average PRAM timeT to the cluster
massM via T;Mz/D. By means of simple scaling assum
tions involving the interference probability, we have argu
that the dynamic exponent may be expressed in terms
static exponents according toz5D2D2/2, whereD is the
fractal dimension andD2 is the second generalized dime
sion. For two dimensions we find thatT;M0.74, whereas the
running time for the best possible sequential algorithm is
least linear inM . Though we have not directly tested th
parallel algorithm, we have performed sequential DLA sim
lations whose results support our scaling assumptions. In
dition, from measurements of relevant interference probab
ties, we have extracted a different value ofD2 that lies
between two previously published values.

Since different dynamics may yield the same distributi
of structures, it is possible that an entirely new method w
be discovered to simulate DLA that can be implemented
parallel with a better speedup. TheP-completeness result

e

e
ru
a
in
,
e
a
s
n
e
ng
ha
re

pr
r
th
it
nt
go
o
su

hat
of
in
e
-
lly
a-

t
ro-
ing

ith
sty
eir
ik,
s-
part

6218 55K. MORIARTY, J. MACHTA, AND R. GREENLAW
@9,10# for the known DLA dynamics do not rule out th
possibility that such a method exists and perhaps even
in polylog time using a feasible number of processors. As
example of this, we note that the usual rules for grow
Eden clusters@2# lead to aP-complete problem. There is
however, an entirely different approach to creating Ed
clusters@8# that can be implemented in polylog time using
polynomial number of processors on a PRAM. Neverthele
given the considerable effort that has gone into understa
ing and simulating DLA, we believe it is unlikely that ther
is an entirely new and highly parallel method of sampli
DLA clusters. The present evidence suggests that DLA
qualitatively greater logical depth than Eden growth and
lated models.

Interferences between the random walkers seem to
vide the fundamental limitation to parallelizing DLA. Ou
algorithm works by processing in parallel, at each stage,
initial maximal group of noninterfering walkers. Therefore,
seems that a more sophisticated method of processing i
ferences in parallel would need to be developed if our al
rithm is to be improved. At the present time we have n
been able to devise such a technique. For the moment
g,

-
es
ns
n
g

n

s,
d-

s
-

o-

e

er-
-
t
p-

pose that our algorithm is actually optimal in the sense t
no other algorithm for sampling DLA has a smaller value
z. Because of the equivalence, up to logarithmic factors
the time, of differing models of parallel computation, th
minimum value ofz is a well-defined quantity that charac
terizes the DLA distribution. Assuming that we have actua
found the fastest PRAM algorithm for DLA, we have me
sured the intrinsic history dependence~equivalently, logical
depth! of DLA. In any case, our algorithm is a differen
technique for parallel generation of DLA clusters and p
vides an upper bound on the time complexity of produc
these clusters.

ACKNOWLEDGMENTS

We are grateful to Peter Ossadnik for providing us w
the DLA code used in the simulations and to the Univeri
of Massachusetts high-energy theory group for use of th
AlphaStation. We thank David Barrington, Peter Ossadn
William Leonard, and Stefan Schwarzer for useful discu
sions and correspondence. This work was supported in
by NSF Grants Nos. DMR-9311580 and DMR-9632898.
@1# T. A. Witten and L. M. Sander, Phys. Rev. Lett.47, 1400
~1981!.

@2# T. Vicsek,Fractal Growth Phenomena~World Scientific, Sin-
gapore, 1992!.

@3# S. Tolman and P. Meakin, Phys. Rev. A40, 428 ~1989!.
@4# C. Amitrano, P. Meakin, and H. E. Stanley, Phys. Rev. A40,

1713 ~1989!.
@5# P. Ossadnik, Physica A176, 454 ~1991!.
@6# P. Ossadnik, Physica A195, 319 ~1993!.
@7# H. Kaufman, A. Vespignani, B. B. Mandelbrot, and L. Woo

Phys. Rev. E52, 5602~1995!.
@8# J. Machta and R. Greenlaw, J. Stat. Phys.77, 755 ~1994!.
@9# J. Machta, J. Stat. Phys.70, 949 ~1993!.

@10# J. Machta and R. Greenlaw, J. Stat. Phys.82, 1299~1996!.
@11# C. H. Bennett, inComplexity, Entropy and the Physics of In

formation, edited by W. H. Zurek, SFI Studies in the Scienc
of Complexity Vol. 7~Addison-Wesley, Reading, MA, 1990!,
p. 137.

@12# C. H. Bennett, Physica D86, 268 ~1995!.
@13# R. Greenlaw, H. J. Hoover, and W. L. Ruzzo,Limits to Par-
allel Computation: P-Completeness Theory~Oxford Univer-

sity Press, London, 1995!.
@14# A. Gibbons and W. Rytter,Efficient Parallel Algorithms

~Cambridge University Press, Cambridge, 1988!.
@15# C. H. Papadimitriou,Computational Complexity~Addison-

Wesley, Reading, MA, 1994!.
@16# F. E. Fich, inSynthesis of Parallel Algorithms, edited by J. H.

Reif ~Kaufman, San Mateo, CA, 1993!, Chap. 20, pp. 843–
899.

@17# R. J. Anderson and G. L. Miller, inProceedings Third Aegean
Workshop on Computing, edited by J. Reif~Springer-Verlag,
Berlin, 1988!, pp. 81–90.

@18# R. F. Voss, Fractals1, 141 ~1993!.
@19# R. F. Voss, Phys. Rev. B30, 334 ~1984!.
@20# C. Amitrano and A. Coniglio, Phys. Rev. Lett.57, 1016

~1986!.
@21# R. C. Ball and O. R. Spivack, J. Phys. A23, 5295~1990!.
@22# T. C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev. Lett.56,

854 ~1986!.

