PHYSICAL REVIEW E VOLUME 55, NUMBER 5 MAY 1997

Parallel algorithm and dynamic exponent for diffusion-limited aggregation

K. Moriarty and J. Machta
Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003-3720

R. Greenlaw
Department of Computer Science, University of New Hampshire, Durham, New Hampshire 03824
(Received 16 December 1996

A parallel algorithm fordiffusion-limited aggregatiofDLA) is described and analyzed from the perspective
of computational complexity. The dynamic exponentf the algorithm is defined with respect to the proba-
bilistic parallel random-access machine model of parallel computation accordifg kg, wherel is the
cluster sizeT is the running time, and the algorithm uses a number of processors polynoridtiis argued
thatz=D —D,/2, whereD is the fractal dimension an, is the second generalized dimension. Simulations
of DLA are carried out to measui®, and to test scaling assumptions employed in the complexity analysis of
the parallel algorithm. It is plausible that the parallel algorithm attains the minimum possible value of the
dynamic exponent in which case characterizes the intrinsic history dependence of DLA.
[S1063-651%97)10305-1

PACS numbds): 61.43.Hv, 02.70-c, 05.40+j

I. INTRODUCTION tions. Several growth models including DLA have been stud-
ied from the perspective of parallel complexity theory. Eden

This paper examines diffusion-limited aggregati@.A) growth, invasion percolation, ballistic deposition, and solid-
[1,2] from the perspective of computational complexity. We on-solid growth have all been shown to have highly parallel
seek to answer the following question: Given an idealizec®!gorithms[8]; that is, using sufficiently many processors
parallel computer, what is the fastest way of generating 4but still polynomial in terms of the system sjzehese sys-
representative DLA cluster? Our objectives are to give a prel€mMs may be simulated in a time that scales as some power
cise formulation of this question, to propose a quantitative®f the logarithm of the system sizgolylog timg. DLA, on
answer, and to convince the reader that the answer charafle other hand, has been sho{@10] to belong to the class
terizes an intrinsic property of DLA. of inherently sequential or, more formally-complete prob-

A DLA cluster is defined by the following growth pro- lems. Thgrefore, it is unhkely that DLA clgsters can be
cess. The cluster begins as a single, stationary seed partid@mpled in parallel in polylog time when restricted to a num-
and grows by the addition of diffusing particles that stick toPer of processors polynomial in the system size. _
the cluster upon contact. A diffusing particleandom Present sequential DLA algorithni§] achieve running
walken is released a large distance from the growing clustefimes that are at best linear in the cluster mass, where cluster
and either joins the cluster by sticking to it or is discarded ifmass refers to the number of particles in the cluster. Even
it journeys very far away. In either case, a new particle isthough theP-completeness result indicates that a highly par-
released as soon as the fate of the preceding one has bedlif! (i-e., polylog time using a polynomial number of pro-
determined. Growth is terminated when a desired clustef€SSors DLA algorithm probably does not exist, we show
mass is reached. It is important to note that only one diffusthat @ more modest parallel speedup is still possible. We
ing particle is present in the system at any given time. Thereadopt the conventional theoretical model of parallel compu-
fore, it is not obvious how to take advantage of parallel com{ation known as the parallel random-access machine
putation in generating DLA clusters. (PRAM) and present a polynomial-processor PRAM algo-

The fractal geometry of DLA aggregates has been extendthm for DLA whose average running time scales as the
sively studied{3—5]. The clusters bear a strong resemblancecluster mass raised to a power less than unity.
to highly branched structures observed in experiments on The use of PRAM time permits a robust definition of a
electrodeposition, viscous fingering, crystallization, and thedynamic exponemhat can be appllled to a wide range of
growth of bacteria colonie2]. The asymptotic properties of Monte Carlo algorithm$10]. We define the dynamic expo-
DLA have proved difficul{2,6] to establish using either the- Nentz via
oretical or numerical methods. This has created a demand for

efficient means of generating very large aggregates. To this T~L% (1.1
end, a parallel approach to DLA has recently been imple-
mented[7]. whereT is the PRAM time needed to generate a representa-

The speedup that can be attained by parallelizing a givetive cluster of sizeL using a number of processors that is
problem is the subject of parallel computational complexitybounded by a power of. The cluster sizd is the linear
theory. Parallel complexity theory is the branch of theoreticadimension of the cluster measured, for example, in units of
computer science in which problems are classified accordinthe particle size. The symbet indicates proportionality in
to the time and processor requirements of their parallel soluthe asymptotic I{ —) limit. We will subsequently deter-

1063-651X/97/585)/6211(8)/$10.00 55 6211 © 1997 The American Physical Society

6212 K. MORIARTY, J. MACHTA, AND R. GREENLAW 55

mine the value ofz for our PRAM algorithm in terms of performed by a subset of the processors determined by the
static scaling exponents of DLA. integer labels. An example of such an instruction is “write
Since massive parallelism of the type allowed by thethe contents of local memory cedl to global memory cell
PRAM model is not currently practical, we do not intend for b.” Note thatb may differ from processor to processor de-
our DLA algorithm to be used at the present time for simu-pending on a previous calculation involving the processor’s
lations. Though some elements of our approach may eventugapel.
ally prove useful in designing a practical parallel algorithm, |t may be that two or more processors will attempt to read
our primary goal is to provide an alternative method of charfrom or write to the same global memory cell during the
acterizing complex objects such as DLA clusters. same clock cycle. The way in which such conflicts are re-
Bennett[11,12 suggests that an object should be re-solved distinguishes several variants of the PRAM model.
garded as complex if it contains structures that are unlikelyrhese variants all have the same running time up to logarith-
to have arisen quickly. In this view the presence of unavoidmic factors when restricted to using polynomially related
able history dependence is the signature of physical comamounts of hardware. For the sake of this exposition, we
plexity. We suggest that the intrinsic history dependence of @hoose the “concurrent read, concurrent writ€CRCW)
physical object may be quantified by the PRAM time re-model. In the CRCW PRAM many processors may simulta-
quired to simulate it using the fastest possible approach. Iheously write to the same global memory cell; of course, a
this way computational complexity serves as a gauge o§cheme is needed for write arbitration. There are a number of
physical complexity. different methods currently used, and we adopt the one in
The remainder of the paper is organized as follows. Secwhich the lowest numbered processor writing succeeds. This
tion Il presents a brief introduction to the theory of parallel yariant of the CRCW PRAM is known as the PRIORITY
computational complexity. Section Il places this paper inmodel, and all references to the PRAM in this paper refer to
context by providing some background on DLA simulationit. The word size in a PRAM is taken to scale as the loga-
methods, including a discussion of the parallel approach ofithm of the problem size.
Ref. [7]. Our PRAM algorithm for growing DLA clustersis A crucial feature of the PRAM model is that any proces-
presented and discussed in Sec. IV, and in Sec. V we analyZgr may read from or write to any global memory cell in a
the algorithm’s complexity and calculate its dynamic expo-single time step. Due to the finiteness of signal speeds and
nent. In Sec. VI we present the results of a numerical simuhardware density, PRAM performance cannot be achieved in
lation, performed using the sequential DLA algorithm of a scalable parallel computer. Nonetheless, the PRAM model
Ref. [5], to test scaling assumptions employed in Sec. Vs useful from both practical and theoretical standpoints. On
Section VII contains our conclusions. the practical side, it serves as a guide to the implementation
of algorithms on real parallel machines. On a conceptual
level, PRAM time provides a measure of a fundamental fea-
ture of a computation that may be calledjical depth[11].
Logical depth is the minimum number of logical operations

This section provides some background on parallel comthat must be carried out in sequence in order to complete a
putational complexity theory. The reader is referred to Refsparallel computational process. The greater the logical depth,
[13—15 for further details. The objective of computational the smaller the speedup that can be achieved through paral-
complexity theory is to classify problems according to how!elism. o
the computational resources needed to solve them scale with The power of parallel computation is illustrated by the
the size of the problem. For parallel complexity the primaryProblem of addingy numbers. The problem size in this case
resources are hardwateonsisting of memory and proces- iS proportional ton (assuming the numbers are bounded in-
sors, or their equivalentsaind time. One of the strengths of dependent of). On a sequential random-access machine or
complexity theory is that resource requirements are compdamiliar desktop computen numbers can be added in linear
rable within a diverse group of computational models includ-time in an obvious way using a single DO loop. The PRAM
ing parallel random-access machines, Boolean circuits, an@Pproach uses a binary tree. For simplicity, supposerthgt
systems of formal logic. Time requirements for a wide classah integer power of 2, say) equals 2. The numbers are
of computational models differ by only a logarithmic factor loaded into global memory and then each of t2 proces-
when the models are required to use polynomially relate@ors is assigned to add a pair of numbers. After the first step,
amounts of hardware. Complexity results thus have a rathe¥e haven/2 partial sums. These are then added in pairwise
fundamental status independent of the computational modéashion and so on. Thus aftersteps the sum is computed.
adopted. This fact supports our belief that a complexityThe parallel time isO(logn) using n processorgwe can
analysis of simulating a physical system reveals intrinsidoring it down ton/logn by trading off processors for time
properties of the system. instead of theD(n) time required by a single processor; so

In this paper we employ the parallel random-access mawe have achieved an enormougxponential speedup
chine model of parallel computation. A PRAM is composedthrough parallelism while using a polynomial number of pro-
of a number of processors, input and output registers, and gessors im. Summingn numbers on a PRAM requires at
global random-access memory. The processors are identici®ast logvloglogn time when restricted to a polynomial num-
except for an identifying positive-integer label. Each procesber of processorgl6], so the logical depth of this problem
sor has a local memory and has access to the common glob@h terms of the PRAM is between log/loglogn and logn.
memory. The processors run synchronously, and all execute A similar but somewhat more involved approach may be
the same program. In one time step, a single instruction isised to compute all the partial sums of a lisnofiumbers in

II. INTRODUCTION TO PARALLEL COMPLEXITY
THEORY

55 PARALLEL ALGORITHM AND DYNAMIC EXPONENT FOR ... 6213
O(logn) time usingn/logn processord14,17. This is an mented with a device that generates random bits. In one time
example of a prefix computation and will be needed later téstep a processor may draw random bits, wherev is the

obtain the full trajectory of a random walker in an efficient Word size. The algorithm described in this paper is a sam-
manner. pling method for DLA implemented on the probabilistic

A problem of sizen that can be solved in time PRIORITY CRCW PRAM model.
(logn)®® (polylog time) usingn®®) processorgpolynomial

hardwarg is said to hgve iﬂlighly parallelsolution. Decision I1l. PREVIOUS SIMULATION METHODS FOR DLA
problems(problems with “yes” or “no” answer$ that have)) .])
highly parallel solutions are in the complexity claskC. In this section we discuss two simulation approaches for

Eden growth is an example of a model in statistical physic® LA For simplicity we restrict the discussion from this
associated with a decision problemNrC. Eden clusters of point onward to off-lattice DLA in two dimensions. We first

massM can be simulated on a PRAM in polylan M) fime 01S6USS the standard sequential method in order to introduce
using polynomially many processdr3]. ! : gy Wil be needed for our par-

A problem of sizen that can be solved in polynomial allel algorithm. This method will also be used in the simula-

0N i th pol l) id tions described in Sec. VI. The second approach is the par-
(n™*%) time with polynomially many processors is said to allel DLA (PDLA) method of Kaufmanet al. [7]. Their

have afeasiblesolution. Decision problems with feasible so- (ochnique is closely related to the approach that we will use,
lutions are in the complexity class (P is usually defined s anq its limitations motivate changes that yield our approach.
the class of problems that can be solved in polynomial time The standard sequential simulation metH&¢b5] imple-

with a single processor; however, allowing polynomially ments several modifications to the original DLA algorithm.
many processors does not enlarge the class since one procesrst, unnecessary initial steps of the walks are eliminated by
sor can simulate one clock cycle of polynomially many pro-starting the walkers at random positions on a “birth circle,”
cessors in polynomial timgClearlyNCC P. A fundamental just large enough to enclose the existing cluster. This change
question in parallel complexity theory is whether there arehas no effect on the cluster distribution sampled by the algo-
feasible problems that have no highly parallel solution orrithm. Efficiency is also improved, without changing the un-
more formally, whetheNC+# P. derlying DLA distribution, by allowing the walkers to ex-

It is conjectured, though not yet proved, that there are irecute variable-step-size rather than fixed-step-size random
fact feasible problems that have no highly parallel solutionwalks, taking larger steps in the empty regions away from
The best candidate class of problems so far has been identhe cluster or between its branches. For our purposes we will
fied using the property oP completeness-or a decision assume a fixed step size. Finally, if a walker steps outside of
problemII to be P completell must be contained i and a “death circle,” the walker is discarded and a new one is
all other problems i must be “easily transformable” into started from the birth circle. If the radius of the death circle
IT (see Ref[13] for further detail. The P-complete prob- is chosen to be much larger than the cluster radius, devia-
lems are the hardest problemsRrto solve in parallel. It can tions from the true DLA distribution can be made extremely
be proved that ifany P-complete problem has a highly par- small. (Issues pertaining to the birth, death, and step size of
allel solution thereveryproblem inP has a highly parallel the walkers are discussed in REf8].) A program[5] that
solution. Thus, if the conjecture thaNC#P holds, employs these techniques is used in our simulations and
P-complete problems do not have highly parallel solutions.achieves a running time that is very nearly linear in the clus-
P-complete problems are often referred toimiserently se- ter mass.
guential The conjecture thatiC+ P is supported in part by PDLA [7] is a practical parallel version of DLA. In this
the fact that there is a large class Pfcomplete problems schemeN random walks are controlled Yy processors. As
(see Ref[13]) and, despite much effort, no highly parallel soon as any walker sticks to the cluster, a new walker is
algorithm has been found for any member of the class. Findadded to the system so that there are alwiysliffusing
ing the shape of a DLA cluster given a list of particle trajec- particles. In the early stages of cluster growth, PDLA yields
tories is aP-complete probleni10]. more compact structures than ordinary DLA and is similar to

While computational complexity theory is generally for- multiparticle diffusive aggregation introduced by Vd4$].
mulated in terms of decision problems, computational statisMultiparticle diffusive aggregation is not in the same univer-
tical physics typically deals witsampling problemsThe sality class as DLA. However, as the cluster massbe-
goal here is to generate a representative member of a statisomes much larger thaN, PDLA crosses over to ordinary
tical ensemble, e.g., a configuration of Ising spins at a giveiLA.
temperature or a DLA cluster. Associated with sampling PDLA becomes a good approximation to DLA for
methods in statistical physics are natural decision problemb!> N for the following reason. Consider a groupMfwalk-
obtained by considering the random numbers used by thers launched near a cluster of mads We define arinter-
algorithm as inputs. Complexity statements concerning sanferencewithin such a group of walkers to be the attachment
pling methods can be formulated in terms of these naturabf one of the walkers to another member of its group that has
decision problems. Referendek 10| discuss the relation be- already joined the cluster. Clearly a group of walks per-
tween sampling and decision problems in statistical physicdformed in parallel may result in a different cluster configu-

Sampling methods require a supply of random numberstation than the same group of walks performed sequentially
Rather than confronting the subtle issues related to generats some given order. IM> N, however, it is likely that each
ing random or pseudorandom numbers, we employ thevalker will explore a different region of the cluster and never
probabilistic PRAM model in which each processor is aug-have the opportunity to interfere with another member of its

6214 K. MORIARTY, J. MACHTA, AND R. GREENLAW 55

group. In this case it makes no difference whether the walkine the time and processor bounds required for each step in
are performed sequentially or in parallel. terms of several parameters occurring in the algorithm. The
Since PDLA uses groups of walks of fixed sike this explanation of how these values relate to the cluster mass
method has the same dynamic exponent as the sequentidl and the analysis of the expected number of iterations of
algorithm. It is only the prefactor relating running time to the main loop are given in Sec. V.
cluster mass that is smaller by a facto™NfOur idea is to let In step 1 the radiu®g of the birth circle is chosen, as in
the group size be determined by interferences; i.e., duringnost sequential DLA algorithms, to be a few particle diam-
each iteration, we process the next interference-free group @fters greater than the distarRg from the origin to the most
walkers in parallel. Since the average size of this group willkemote cluster particle. In our algorithiRg must exceed
increase withM, our algorithm has a smaller dynamic expo- R by at least two particle diameters to ensure that a single
nent than PDLA or the sequential algorithm. Furthermorejnterference cannot cause the cluster to grow beyond the
PDLA does not sample the correct DLA distribution exceptbirth circle. In order to add the individual steps of a random
in the limit M>N. Our algorithm handles interferences in a walk efficiently in parallel, we limit each walk to a predeter-
way that allows the correct distribution to be sampled for anymined number of stepK. In principle, walks in sequential
value ofM. DLA can be arbitrarily long. Nonetheless, we argue in Sec.
V that, without affecting the dynamic exponent of our algo-
rithm, K can be chosen as a function Bf in such a way
that the ideal DLA distribution is approximated to any de-

In this section we present our parallel algorithm for DLA sired degree of accuracy. In this sense, limiting the walk
and then discuss each step of the algorithm in detail. Oulength is analogous to implementing a death circle in sequen-
complexity analysis is somewhat unusual and best describeitfl DLA. Finally, W is chosen, as discussed in Sec. V, to
in two sections. In the present section we examine the tim&ake the probability of an interference close to unity. This
complexity of each step in terms of a few parameters inhoice ensures that the largest possible group of noninterfer-
volved in the algorithm. In Sec. V we examine the timeing walks will be identified for parallel processing.
complexity of the algorithm’s main loop and also explain ~ To begin a walk in step 2, a random starting position on
how several of the parameters are chosen. the birth circle is selected. Thef randomly directed steps

The central theme of our algorithm is to generate largeof fixed length are generated in parall@ecause walks are
and dynamically increasing groups of noninterfering walkersgenerated in parallel, the variable-step-size scheme of the
that in turn can be processed quickly and correctly in paralmost efficient sequential algorithms cannot be usethally,
lel. At the beginning of each iteration, we generate, in par-a parallel prefix computatiofil4] is performed to calculate
allel, a group of random walks large enough so that an interthe position of the walker after each step of its trajectory.
ference will be nearly certain to occur. Using parallel Since a prefix computation involving quantities can be
techniques we then identify the first interference that wouldoerformed on a PRAM irO(logK) time usingK/logK pro-
occur if the walks were performed sequentially in a specifiedcessors, th&V K-step walks can be determined in parallel in
order. Finally, in parallel, we attach any walkers that stick toO(logK) time usingWK/logK processors.
the cluster up to the point of the first interference. Once the walks have been computed, we determine in

The cluster begins as a single seed particle placed at ttgep 3 if, where, and on what step of its trajectory each of the
origin. The coordinate@airs of fixed-precision position val- W walkers would encounter the existing cluster if none of
ues of successive cluster particles are stored in memory adhe other walkers in the group preceded it. The following
cording to the order in which the particles join the cluster.sequence of operations, which determines the fate of the
The algorithm’s main loop is iterated until a cluster of theith walker, is performed for aW walkers in parallel.
desired mass is grown. We analyze the expected number of First,M processors are assigned to each ofkhsteps of
iterations of this loop in the next section. The main loopthe ith walk, with the M lowest-numbered processors as-

IV. NEW PARALLEL ALGORITHM FOR DLA

consists of the following steps. signed to the first step and successive processors assigned to
(1) Choose a birth radiuRg, a walk lengthK, and a the later steps. Each of the processors assigned to a given
numberW of walks to generate. step of the walk checks one cluster particle to see whether

(2) GenerateW random walks, each beginning at radius theith walker would contact it during the specified step. Any
Rg and consisting oK steps of fixed length. Number the processor that detects such a hit writes its step number to a
walks from 1 throughW to indicate the order in which they memory cell assigned to thigh walker. Note that alMK

would be performed by a sequential algorithm. processors for théth walk write to the same cell; thus, the
(3) Determine the fate of each walker, temporarily ignor-assignment of lower-numbered processors to earlier steps of
ing interferences with the others. the walk ensures that this cell will contain the number of the

(4) Identify the first interference that would occur if the earliest step(if any) on which theith walker contacts the
walks were performed sequentially in their specified order. cluster in the absence of interference from other walkers. If

(5) Attach any walkers that stick to the cluster up to andno processor writes to the designated cell, theritihevalker
including the second member of the interfering pair identi-does not hit the existing cluster. The procedure just described
fied in step 4. Disregard any remaining walk®te that this can be carried out, for an arbitrary walker, in constant paral-
does not affect the distribution of DLA clusters generated lel time usingMK processors or, alternatively, @(logK)
Update the cluster ma#d and the cluster radiu®: accord- time using onlyMK/logK processors by trading processors
ingly. for time.

We now elaborate on the details of these steps and exam- In the event that theéth walker does hit the cluster, its

55 PARALLEL ALGORITHM AND DYNAMIC EXPONENT FOR ... 6215

sticking position and the particle to which it sticks, its “par- sors[17]. The cluster mass may be updated in constant time.
ent” particle, must be determined. So far we have identifiedAny change inR¢ resulting from the addition of the new
the step on which the walker hits the cluster, but, in theparticles can be calculated in constant time usjpgproces-
process of taking this step, the walker might overlap severaors since the cluster is “centered” at the origin. In the next
cluster particles. By means of a standard algorithm for findssection, the time and processor requirements found for each
ing the minimum ofM numbers, the first particle contacted step of the main loop are used to estimate the average run-
during the stejitheith walker’s true pareftcan be identified ning time of the algorithm.

in constant parallel time usinyl(M —1)/2 processors or,

alternatively, inO(logK) time usingM (M —1)/(2logK) pro- v. ANALYSIS OF THE MAIN LOOP OF THE ALGORITHM

cessors. Théth walker's position upon first contacting its)) N
parent is recorded as its potential sticking site. First we describe hovK and W are specified and then

To summarize step 3, the operations described in the prlfaxamine the expected number of iterat?ons of the mgin loop
ceding two paragraphs determine the fate ofithavalker as in our parallel DLA algorithm. To begin the analysis, we
if none of the other walkers in the group preceded it. Thesénust specify howk andW are to be chosen in step 1 of the
operations can be performed in constant time and, for a®lgorithm. SinceRg~Rc and because random walks behave
W walkers in parallel, usingVMmaxK,(M—1)/2} proces- diffusively, with distance scaling as the square root of time,
sors or, alternatively, in time O(logK) using choosingK~R2 is necessary in order to approximate the
WMmaxK,(M—1)/2}/logK processors. ideal DLA distribution. A consequence of this choice is that

The fourth step of the algorithm is to identify, based onthe sticking probability remains fixed as the cluster grows.
the set of potential cluster attachments, the next interferenc&/e note that by increasing the prefactor relatihgo Rc we
that would occur if the walks were carried out sequentially inc&n come arbitrarily close to sampling the ideal distribution.
the order specified in step 2. In other words, we must deter- The choice ofW is not critical as long as the probability
mine the numbe;,, of the lowest-numbered walker that, on Of an interference among the walkers remains near unity as
some step of its trajectory prior to striking the existing clus-the cluster mas#! increases. Since the sticking probability
ter, would hit a particle placed at the potential sticking site ofis constant, choosingV~M**< for a smalle>0 is suffi-
some lower-numbered walker. Determiniiyg, can be ac- cient.
complished in constant time usigW(W—1)/2 processors, For DLA it is believed that the radius of gyratioRg
one processor for each pair of walks and each step of thécales with cluster mass according to
later walker. Each step of the later walker is compared to the D
potential sticking site of the earlier walker. If an interference Reg~M~, CRY
is found during a comparison, then the detecting processor) i , i
writes the number of the higher-numbered walk of its pair toVhereD is the fractal dimension. Sind8c~Rg, we have

g 2D. ; :
the memory location designatég,. Note that the assign- <~ M“"; therefore, botiK andW need only increase poly

ment of the processors, 1. . KW(W—1)/2 to their com- nomi_ally with M. Consequently_, no step of the algorithm_
parisons is such that lower-numbered processors are assigri&fiuires more than a polynomial number of processors in
to comparing lower-numbered walks. For example, procesM' Specifically, the analysis given in Sec. IV ylelds”a pro-
sors 1 throughK compare walk 1's sticking site and each CesSor bound oM2(**P%9/logM using the probabilistic
step of walk 2, processok+ 1 through X compare walks PRIORITY CRCW PRAM model.

1 and 3, and 2 and 3, and so on. By again trading processors Tq estimate thg change in cl.uster mass during a single
for time, this computation can be performed @(logk) [tération of the main loop, we defirfe(M,n) to be the prob-
steps using<W%/logK processors. ability for an interference to occur among the nexwvalkers

The techniques from step 3 can again be used to find thiat stick to a DLA cluster of massl. According to our
parent and sticking site of walkég, taking into account the &lgorithm for a growing cluster that has attained a rdss

addition of lower-numbered walks to the cluster. The necesth® €xpected change in cluster mass during the next iteration
sary operations can be performed within the bounds notelf 9iven by

for an arbitrary walker in step 3 above. Here we observe that W

no choice ofW can guarantee that an interference will take AM = 2 A[P(M,n)—P(M,n—1)] (5.2
place. In the case of no interference, we simplyiseequal A=2 ' ' ’ '
to W.

In step 5 walkeii;,; and all lower-numbered walkers that For largeM andW the sum can be replaced by an integral
hit the cluster are permanently placed at their sticking sites.
This can be accomplished by making a list of the walkers AM~fwdnn&P(M'n)
with i<i;,; and, by means of a parallel sublist computation 0 an
[14], removing from the list any walkers that do not attach to
the cluster. If the initial list is constructed according to the |f DLA clusters are self-similar, then it seems plausible
specified order of the walks, then rankif#}] the new clus- that the interference probability depends notMnor n in-
ter particles based on their positions in the sublist will enablejividually, but only on some combination thereof, deter-
their coordinates to be written to the appropriate memorymnined by the multifractal geometry. Therefore, we make the
locations and the new value & to be computed. For an scaling hypothesis
initial list of lengthi;,, the sublist and ranking procedures
can be carried out i@(logi;,) time usingi;,/logi;,; proces- P(M,n)=F(nM™7), (5.9

(5.3

6216 K. MORIARTY, J. MACHTA, AND R. GREENLAW 55

where y is yet to be determined. Inserting this expressionwhere 8 has the theoretical valug,/D.
into EqQ. (5.3 yields We now consider the time requirements of our algorithm.
Specifically, we obtain an expression fAfT, the expected
AM~M?7. (5.5 time required to complete an iteration during which a cluster
of massM grows by an amourAM. In Sec. IV, we found
that steps 1-4 of the algorithm could be performed in
O(logK) time and step 5 im(logi;,) time. SinceAM is
simply equal to the product of th@onstank sticking prob-
ability and the expected value of;, the time to perform
step 5 scales as lagVl. As previously mentioned, botK
andAM scale as powers d¥l; therefore,

In Sec. VI we provide simulation results that support our
scaling hypothesis.

We now determine a theoretical value fpby examining
the form of P(M,n) in the limit M>n> 1. Clearly, for any
finite n, interferences will become rare & —o. In this
limit, the n(n—1)/2 distinct interferences that are possible
among the nexh walkers that stick to a cluster of mabk

may be treated as independent events. Thus AT~logM. (5.12
lim P(M,n)= n(n—1) P(M,2), (5.6) Combining Eqgs(5.5 and(5.12 we find that'the'growth
M—s o0 2 rate dM/dT (=AM/AT) of a typical cluster is given by

dM/dT~M7?/logM. Integrating this expression yields
whereP(M,2) is the probability for an interference to occur

between the next two walkers that stick to a cluster of mass T~ML"7ogM. (5.13
M, i.e., the probability that the second walker will attach to
the first. By Egs.(5.1), (5.10, (5.11), and(5.13 it follows (ignoring

Now we relateP(M,2) to scaling exponents of the growth the logarithmic factor that T~Rg, where the dynamic ex-
probability distribution. These scaling exponents, known agonent is
generalized dimensioniR0], are defined as follows. Cover
the accessible perimeter of a cluster with boxes of linear z=D—D,/2. (5.149
dimensionl and denote byr; the probability that the next
walker to join the cluster will stick within théth box. The
qth momentZ, of the growth probability distribution is de-
fined by

It should be noted that this expression fois valid for any
dimension greater than one and depends on dimension only
through the static scaling exponemsandD..

ZqEE Wﬁ. 5.7 VI. SIMULATION RESULTS
! In order to test our assumptions E@5.4) and(5.9), we
grew a total of 1440 DLA clusters, using a fast sequential

algorithm developed by Ossadnils]. We measured the
probability P(M,n) for an interference to occur among the
nextn walkers that stick to a cluster of mask Each cluster
7 ~R-(@-1Dg (589 Was assigned a specific magsand a particular value af
¢ ¢ for which P(M,n) would be measured. Once a cluster
Given two walkers that hit the cluster, we note from Eq.reached mash!, repeated trials were performed to determine
(5.7) thatZ, is the probability for both to hit within the same the likelihood of an interference occurring among the next
box. ClearlyP(M,2) is not equal t&Z, since, fora<l, only N walkers to stick. We performed farials for n=2 and
a small fraction of the cases in which two walkers hit within 10° trials for n>2. Each trial consisted of releasing test
the same box will result in interferences. In addition, therewalkers either until some test walker attached to a previous
are also cases where two interfering walkers do not hit withirfest walker(interferencg or until n walkers had successfully
the same box. Nevertheless, it still seems reasonable to agttached to the cluster without such an interference occur-
sume that the scaling behavior &(M,2) is that of Z,, ring. In both cases all test walkers were then removed from
namely, that the cluster and the next trial was begun. The fraction of trials
for which an interference occurred provided a measurement
P(M,2~M A, (5.9 of P(M,n) for the particular cluster being tested.
In this fashion we measurdel(M,n) for clusters at each
of eight masses ranging from @ 1.7x 10° and for each of
B=D,/D (5.10 nine n values between 2 and 94. For eadfl,f) pair, we
grew a sample of 20 clusters and calculated the mean
and we have made use of E@.1). Simulation results pro- (P(M,n)) of the 20 individual measurements along with its
vided in Sec. VI lend support to Eg.9) and (5.10. standard error. Although, at first glance, using each cluster
Substituting Eq.(5.9) into Eq. (5.6) gives, for n>1, for only one (M,n) pair might seem inefficienfas opposed,
P(M,n)~n®M~#. Thus, if P(M,n) has the assumed form Say, to making measurements at intermediate masses during
(5.4), the exponenty, defined in Eq(5.4), is related to the the cluster’s growth our method eliminates undesirable cor-
exponentB, defined in Eq(5.9), by relations between data points. The entire experiment required
about four weeks of CPU time on a DEC AlphaStation 200
v=pBI2, (5.1 4/166.

For a fixedl such thaa<|<Rg (with a the particle radius
the scaling behavior o, with Rg defines thegth general-
ized dimensiorD according to

where

55 PARALLEL ALGORITHM AND DYNAMIC EXPONENT FOR ... 6217

T T T plot, but the observed data collapse is no less convincing
when all the data are included. Thus, for our range of cluster

281 1 massesga factor of 17, the interference probability does ap-
pear to have the scaling form assumed in Ef4) with
v=BI2.

30 . Now we compare our measured value@fvith the pre-

diction 8=D,/D [Eq. (5.10]. A numerical estimate for the
fractal dimension of two-dimensional DLA is
32k i D=1.715+-0.004 [3]. SinceD is known much more pre-
cisely thanD,, we use this value oD and our measured
value of B to predictD,. We obtainD,=0.909+0.006 as
compared with D,=0.83+0.05 in Ref. [21] and
D,=0.980+0.010 in Ref.[22]. Since the two previous re-
! L L sults are inconsistent with each other and since our result,
52 5.6 6.0 though intermediate between the two, is consistent with nei-
10g, M ther, the question of whethg#=D,/D remains open. At
10
present, we see no reason to abandon(kd.0; therefore,
we regard our simulation as providing an alternative, rela-
FIG. 1. logP(M,2)) vs logiM, where(P(M,2)) is the mean tjyely precise measurement d,. Using our numerical
probability, from a sample of 20 DLA clusters of mask for an value of 8 along with Eqs(5.11) and(5.13) yields a numeri-
int(?rfe_renge to_occur_between the next two walkers that stick. The 1\ o1 ,ez=1.261+ 0.004 for the dynamic exponent of our
solid line is a linear fit to the data and has slop8.53. parallel DLA algorithm, as compared with=D~1.7 for
both PDLA and the best sequential DLA algorithms.

log,4<P(M,2)>

To check Eq.(5.9 and to measurg3, we fit a line to a
plot of log,o(P(M,2)) vs log,gM as shown in Fig. 1. Statis-
tical error bars(not shown in the vertical direction are ap-
proximately equal to the symbol height. The apparent good The DLA growth process is inherently history dependent.
fit indicates that the dependence B{M,2) on M is well The random walks that generate the cluster must in principle
described by a power law for the range of masses we corpe run one at a time to precisely simulate the DLA distribu-
sidered. Our best-fit value of the exponent in E8.9) is tion. PreviousP-completeness results show that there is al-
Bexp=0.530£0.003. The error bounds in this and subse-most certainly no clever way to fully eliminate this history
quent exponent estimates include only statistical contribugependence and to generate DLA clusters from walk trajec-
tions and do not reflect the uncertainty associated with extories by any highly parallel process. In this paper we have
trapolating to infinite cluster size. demonstrated that a more modest parallel speedup is pos-

In order to test Egs.(5.4 and (5.11, we plotted sible. We have shown that an average running time sublinear
(P(M,n)) vs nM~Pesl? as shown in Fig. 2. For the sake of in the cluster mass may be achieved by processing walkers in
clarity, only three of the cluster masses are represented in thgiccessive, interference-free groups. The interference prob-

ability determines how quickly the average size of these
groups increases with cluster mass and thus controls the ex-
1.0 ' T 5 T tent of the speedup attainable by this approach.

0° By adopting the PRAM model of parallel computation,
08 L &] we are able to precisely characterize the speedup achieved by
o our parallel approach to DLA. The dynamic exponerfor
v the algorithm relates the average PRAM tiféo the cluster
06| § . massM via T~MZP. By means of simple scaling assump-
tions involving the interference probability, we have argued
g that the dynamic exponent may be expressed in terms of
041 7 static exponents according =D —D,/2, whereD is the
v fractal dimension andD, is the second generalized dimen-
02k i sion. For two dimensions we find th#t- M %4 whereas the
running time for the best possible sequential algorithm is at
g least linear inM. Though we have not directly tested the

0.0 b¥ L ' L L parallel algorithm, we have performed sequential DLA simu-
0 1 2 3 4 5 lations whose results support our scaling assumptions. In ad-
nM-#/2 dition, from measurements of relevant interference probabili-
ties, we have extracted a different value Bf, that lies

FIG. 2. (P(M,n)) vs nM~Bexf? plotted forM=1x10° (0), between two previously published values.

5% 10° (), and 1.% 10° (V). (P(M,n)) is the mean probability, Since different dynamics may yield the same distribution
from a sample of 20 DLA clusters of mabks, for an interference to of structures, it is possible that an entirely new method will
occur among the next walkers that stick ang@,,,=0.53 is minus ~ be discovered to simulate DLA that can be implemented in

the slope of the line shown in Fig. 1. parallel with a better speedup. Thecompleteness results

VIl. CONCLUSION

<P(M,n)>

6218 K. MORIARTY, J. MACHTA, AND R. GREENLAW 55

[9,1Q] for the known DLA dynamics do not rule out the pose that our algorithm is actually optimal in the sense that
possibility that such a method exists and perhaps even run® other algorithm for sampling DLA has a smaller value of
in polylog time using a feasible number of processors. As az. Because of the equivalence, up to logarithmic factors in
example of this, we note that the usual rules for growingthe time, of differing models of parallel computation, the
Eden clusterg?2] lead to aP-complete problem. There is, minimum value ofz is a well-defined quantity that charac-
however, an entirely different approach to creating Ederterizes the DLA distribution. Assuming that we have actually
clusters[8] that can be implemented in polylog time using afound the fastest PRAM algorithm for DLA, we have mea-
polynomial number of processors on a PRAM. Neverthelesssured the intrinsic history dependen@guivalently, logical
given the considerable effort that has gone into understandiepth of DLA. In any case, our algorithm is a different
ing and simulating DLA, we believe it is unlikely that there technique for parallel generation of DLA clusters and pro-
is an entirely new and highly parallel method of samplingvides an upper bound on the time complexity of producing
DLA clusters. The present evidence suggests that DLA hathese clusters.
qualitatively greater logical depth than Eden growth and re-
lated models. ACKNOWLEDGMENTS

Interferences between the random walkers seem to pro-
vide the fundamental limitation to parallelizing DLA. Our ~ We are grateful to Peter Ossadnik for providing us with
algorithm works by processing in parallel, at each stage, théhe DLA code used in the simulations and to the Univeristy
initial maximal group of noninterfering walkers. Therefore, it of Massachusetts high-energy theory group for use of their
seems that a more sophisticated method of processing inteilphaStation. We thank David Barrington, Peter Ossadnik,
ferences in parallel would need to be developed if our algoWilliam Leonard, and Stefan Schwarzer for useful discus-
rithm is to be improved. At the present time we have notsions and correspondence. This work was supported in part
been able to devise such a technique. For the moment supy NSF Grants Nos. DMR-9311580 and DMR-9632898.

[1] T. A. Witten and L. M. Sander, Phys. Rev. Le#t7, 1400 allel Computation: P-Completeness Thed®xford Univer-
(198.])- o sity Press, London, 1995

[2] T. Vicsek, Fractal Growth PhenomenéNorld Scientific, Sin- [14] A. Gibbons and W. RytterEfficient Parallel Algorithms
gapore, 199p

[3] S. Tolman and P. Meakin, Phys. Rev.48, 428 (1989.

[4] C. Amitrano, P. Meakin, and H. E. Stanley, Phys. Rev@\
1713(1989.

[5] P. Ossadnik, Physica A76, 454 (199)).

[6] P. Ossadnik, Physica 495 319 (1993.

(Cambridge University Press, Cambridge, 1988

[15] C. H. Papadimitriou,Computational ComplexityAddison-
Wesley, Reading, MA, 1994

[16] F. E. Fich, inSynthesis of Parallel Algorithmedited by J. H.
Reif (Kaufman, San Mateo, CA, 1983Chap. 20, pp. 843—

[7] H. Kaufman, A. Vespignani, B. B. Mandelbrot, and L. Woog, 899.

Phys. Rev. E52, 5602(1995. [17] R. J. Anderson and G..L. M.lller, |ﬁroceec.i|ngs.Th|rd Aegean
[8] J. Machta and R. Greenlaw, J. Stat. Prg&. 755 (1994). Workshop on Computingedited by J. ReifSpringer-Verlag,
[9] J. Machta, J. Stat. Phyg0, 949 (1993. Berlin, 1988, pp. 81-90.
[10] J. Machta and R. Greenlaw, J. Stat. Pt83.1299(1996. [18] R. F. Voss, Fractald, 141(1993.

[11] C. H. Bennett, inComplexity, Entropy and the Physics of In- [19] R. F. Voss, Phys. Rev. B0, 334 (1984.
formation edited by W. H. Zurek, SFI Studies in the Sciences[20] C. Amitrano and A. Coniglio, Phys. Rev. Letg7, 1016

of Complexity Vol. 7(Addison-Wesley, Reading, MA, 1980 (19886.
p. 137. [21] R. C. Ball and O. R. Spivack, J. Phys.28, 5295(1990.
[12] C. H. Bennett, Physica B6, 268 (1995. [22] T. C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev. [5éit.

[13] R. Greenlaw, H. J. Hoover, and W. L. Ruz4dmits to Par- 854 (1986.

